2024/05/17 13:14 12

GPIO Inputs - LED Control via a Button and Interrupt

GPIO Inputs - LED Control via a Button and Interrupt

The previous example of using a button to light an LED, everything worked fine, but our processor was at 100%, this needs fixing, so in this
example instead of constantly polling and setting GPIO pins, we are using a interrupt where by we do nothing until a button is actually

pressed.

Create a new file in the normal way (you can download the python file

to save time)

sudo nano LED-Button-i.py

#import modules
import RPi.GPIO as GPIO
import time

here

This imports the GPIO library that allows the use of the GPIO pins,
This imports the time library (for delays among other things)

These libraries are built in to Raspbian.

so we can reference it by using BOARD as pin 12. However there is
another option (BCM) where we can reference a pin by it's name, pin
12 is called GPI018 (a reference to its place on the chip).

GPIO.setup(11l, GPIO.IN, pul

#
#
#
GPIO.setmode (GPIO.BOARD) # This sets the GPIO pin numbering. Our LED is connected to Pin 12,
#
#
#
L

up_down=GPIO.PUD DOWN) # setup GPIO Pin 11 as an input, and set

the resistor to Pull Down (PUD DOWN)

this is the pin the button is connected to
button is connected from pin 11 to the

+3.3v pin on the GPIO

this def buttonPressed needs to be defined before it can be reference in the GPIO.add event detect

def buttonPressed(channel): # this is where our code will look when button is pressed
print "Button is Pressed" # print something to the screen
GPIO.output(12,1) # set GPIO pin 12 to high (3.3v) so LED will come on

this is where we setup the GPIO input to use the event buttonPressed that was

defined previously. bouncetime is a simple switch debouncer in mS.

GPIO.add event detect(11l, GPIO.RISING, callback=buttonPressed, bouncetime=500)

GPIO.setup(12, GPIO.OUT) # Sets the GPIO pin as output. This is connected to the LED, then
from the LED to Ov via a 330 Ohm resistor.

GPIO.output(12, 0) # sets the GPIO Pin 12
try:

while True: #

time.sleep(1) #

GPIO.output(12,0) #

except KeyboardInterrupt: #

GPIO.cleanup() #

#End

Once you have your file saved, you can run it by using

sudo python LED-Button-i.py

Example Output

Here you can see the code running.

(video)

to low (so Ov)

start a loop

1 second delay (or LED wont stay illuminated
Set PIN 12 to Ov so LED is off

if Ctrl-C is pressed, exit loop

reset GPIO pins to default state

The main advantage using the interrupt is that my processor occupancy on the Pi Zero is now around 10% normal, and 14% when | press

the button. That's much better than the previous constant 100%.

WalkerWiki - wiki.alanwalker.uk - http://cameraangle.co.uk/

http://cameraangle.co.uk/lib/exe/fetch.php?cache=&media=led-button-i.mp4

Last

;822;33/09 gpio_inputs_-_led_control_via_a_button_and_interrupt http://cameraangle.co.uk/doku.php?id=gpio_inputs_-_led_control_via_a_button_and_interrupt&rev=1485986882
22:35
From:
http://cameraangle.co.uk/ - WalkerWiki - wiki.alanwalker.uk '
a- 4 '-
Permanent link: . ; L

FAT AT Py
http://cameraangle.co.uk/doku.php?id=gpio_inputs_-_led_control_via_a_button_and_interrupt&rev=1485986882 'i|"-l'l'- :'I ‘li-l- -

Last update: 2023/03/09 22:35

http://cameraangle.co.uk/ Printed on 2024/05/17 13:14

http://cameraangle.co.uk/
http://cameraangle.co.uk/doku.php?id=gpio_inputs_-_led_control_via_a_button_and_interrupt&rev=1485986882

	GPIO Inputs - LED Control via a Button and Interrupt
	Example Output

