Inverted LED Display

Apr 2017

I made a mistake

When I designed the PCB for this project. I did what most people would do and I made the PCB the 'right way up' with 40 Way Raspberry pi header and the 7 Segment LED also the normal way up (so you can read it). Later on I realised this was a bit of a mistake, because this means the Raspberry Pi Zero Power and USB connections are now at the bottom, so you can't power this up and put it on a table :(.

Fear not though, with some help I have edited the code so that it writes the time upside-down, so if you rotate your Raspberry Pi 180° you can read the time correctly, and still put it on the table. Below is the adjusted code.
<sxh [py][; options for SyntaxHighlighter]> \#! /usr/bin/python \# Python Script to run a 7 Segment Common Anode LED as a clock. \# Version 1.0 import RPi.GPIO as GPIO import time
\#Define numbering system for the IO pins Raspberry Pi GPIO.setmode(GPIO.BCM)
\# Define GPIO ports for the 7 seg gpioSegments $=(5,6,13,19,26,21,20,16)$ \# 7 seg segment pins $(11,7,4,2,1,10,5,3)+100 \mathrm{R}$ inline \# Setup channels for output and set initial values for segment in (gpioSegments):

```
GPIO.setup(segment,GPIO.OUT)
GPIO. output (segment,GPIO.HIGH)
```

\# Define GPIO ports for the digits $0-3$ gpioDigits $=(18,23,24,25)$ gpioDigits $=(25,24,23,18)$ \# Pins $(12,9,8,6)$ select digits $0-3$ respectively reading LTR on display \# Setup channels for output and set initial values for digit in (gpioDigits):

```
GPIO.setup(digit,GPIO.OUT)
GPIO.output(digit,GPIO.LOW)
```

\#Define flags for comtrol of Colon separator on display colon_visible=True colon_counter=0
\#Define segment arrays for each number to be displayed numbers $=\{$

```
'0':(0,0,1,0,1,0,0,0),
    '1':(0,1,1,1,1,1,0,1)
    '2':(0,0,1,1,0,0,1,0),
    '3':(0,0,1,1,0,1,0,0),
    '4':(0,1,1,0,0,1,0,1),
    '5':(1,0,1,0,0,1,0,0),
    '6':(1,0,1,0,0,0,0,0),
    '7':(0,0,1,1,1,1,0,1),
    '8':(0,0,1,0,0,0,0,0),
    '9':(0,0,1,0,0,1,0,0),
    ' ':(0,0,0,0,0,0,0,0)}
```

\#Cycle through each digit and its segments try:

```
while True:
    time_string = str(time.ctime()[11:13]+time.ctime()[14:16]).rjust(4)
    for digit in range(4):
```

\#select digit to display

```
GPIO.output(gpioDigits[digit], 2)
```

\#set required segments on

```
for segment in range(0,8):
    GPIO.output(gpioSegments[segment], numbers[time_string[digit]][segment])
```

\#check to see if we are on segment 3 of digit 2(LTR)

```
if ((digit==2) and (segment==2)):
```

\#when colon counter gets to set value flip colon display mode between TRUE (visible) and False (NOT.visible)

```
if (colon_counter<=25):
```

\#count value not reached turn colon ON or OFF based on current setting of colon_visible

```
if colon_visible==True:
    GPIO.output(13, 0)
else:
    GPIO.output(13, 1)
```

\#colon counter set value reached so flip colon display mode and reset colon counter

```
else:
    colon_counter = 0
    colon_visible = not colon_visible
```

\#display all selected segments for a short time

```
time.sleep(0.005)
```

\#turn-off All segments

```
for segment in range(0,8):
    GPIO.output(gpioSegments[segment],GPIO.HIGH)
```

\#turn-off current digit selector pin

```
GPIO.output(gpioDigits[digit], GPIO.LOW)
```

\#advance colon counter

```
colon_counter=colon_counter+1
```


finally:

```
GPIO.cleanup()
```

</sxh>

```
From:
http://cameraangle.co.uk/ - WalkerWiki - wiki.alanwalker.uk
Permanent link:
http://cameraangle.co.uk/doku.php?id=inverted_led_display&rev=1491340556
Last update: 2023/03/09 22:35
```


